
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energyʼs National Nuclear Security Administration under contract DE-AC04-94AL85000."

Root Cause Analysis  

October 15, 2008"

LACSS Resilience Workshop"

Presented by Jon Stearley"

Sandia National Laboratories"

Agenda  
(10 slides, 3 goals)"

2

Get your help on Root Cause"
–  How to represent interdependencies?"

Encourage you towards standardized validation data"
–  Component Operations Status (COS)"

Make you aware of some other work"
–  Sisyphus (Logs)"
–  9Lives (OS)"

Identify Faults (CSSE)"
–  Failure Prediction
–  Root cause analysis
–  Impact: enable timely and focused

response"

Respond (LDRD):
–  System-Directed Resilience
–  Impact: enable apps to run

continuously despite faults

Goal: Automatic identification and response to faults

Context: Resilience Activities at Sandia"

3

Validate

Root Cause: Big Cheese Model"

4

C
om

ponents
What Stinks?!#

Distinguishing Symptoms"
–  Text (logs, username, job id, rank id, …)"
–  Numbers (temperature, correlation, …)"

Suspect Components"
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies"
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies

*

Given hints (influences search path):

Identify:
&

 D
ependencies!

Root Cause: Big Cheese Model"

5

Distinguishing Symptoms"
–  Text (logs, username, job id, rank id, …)"
–  Numbers (temperature, correlation, …)"

Suspect Components"
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies"
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies

Given hints (influences search path):

Identify:

LABELS "

VERTICES

EDGES

G=(V,E,L)
Properties?
Useful model?
Useful algorithms?

User u1, jobid 1, node X, …
 “timeout writing…”

User u1, jobid 2 filesystem f, node Y, …
 “CRC error Y->Z”

I/O server s

node Z

filesystem f

.

.

.

Disk d

.

.

.

Input: “jobid1, jobid2”
Output: “link L, retransmit=5”

Input: “CRC error, today”
Output: “link L, user u1, jobid 1”

Link L
retransmit=5

(network routes)

6

Root Cause: Flakey Link (e.g.)"

FYʼ09 Root Cause Deliverables"

First Quarter"
–  Mathematical formulation of at least three important but

currently non-computable root cause scenarios based on
current systems"

Second Quarter"
–  Select appropriate algorithms for solution. "

Third Quarter"
–  Demonstrate proof-of-concept solutions. "

Fourth Quarter"
–  SAND report"

7

Validation: 
“Quantify our ability to predict node failures on the TLCC platform”"

Component Operations Status (COS) 
Production Uptime (PU) = ready for immediate use by one or more production user 
Scheduled Downtime (SD) = not in PU for scheduled reasons 
Unscheduled Downtime (UD) = not in PU for unscheduled reasons 

" "FAILURE = the onset of Unscheduled Downtime"

FY09:"
1.  Collect per-node COS on TLCC (admins express “SD” on CLI)"
2.  Perform prediction experiments on symptomatic data (numeric, text)"
3.  Use COS to quantify (and validate) prediction results"

COS is a proposed standard"

Stearley. Defining and Measuring Supercomputer Reliability,
Availability, and Serviceability (RAS), LCI05."

Recent Work on Logs (5 years worth) 
Oliner, Stearley. Alert Detection in System Logs, ICDMʼ08. 

 www.cs.sandia.gov/sisyphus cfdr.usenix.org/data.html#hpc4"

Responding to Faults (9Lives)  
System-Directed Resilience (LDRD)"

Three Primary Research Thrusts"
•  Application quiescence"

–  Suspend App, handle in-flight messages and in-progress IO"

•  Efficient state management"
–  Identify critical state (app characterization, app guidance, changesets)"
–  System guidance for when to extract state (eg MTTI)"
–  Explore diskless methods and compression "

•  Fault recovery"
–  System software to support dynamic node allocation"
–  Explore network virtualization to abstract physical node ID from software."
–  Explore efficient methods for state recovery (roll-back, roll-forward techniques)"

Low Overhead (easier to develop and support, faster to run)"
•  Lightweight Kernel (Kitten)"
•  Stateless Networking Protocol (Portals)"

10

End"

11

Get your help on Root Cause"
–  How to represent interdependencies?"

Convince you towards standardized validation metrics"
–  Component Operations Status (COS)"

Make you aware of some other work"
–  Sisyphus (Logs)"
–  9Lives (OS)"

Extra Slides"

12

1. Automatically rank logs
 by information content.

Sisyphus  
Automatic Fault Detection"

2. Automatically color words by
 information weight.

3. Automatically deduce
 word and message patterns.

“interestingness” =
information = |(GL)j|

Gi,j=1+Hi , L=log2(tfi,j)
Hi=∑jpijlog2(pij)/log2(n)
 where pij= tfi,j /∑jtfi,j

L

|(GL)j|

words logs

time

G

“i
nt

er
es

tin
gn

es
s”
"

Similar computers correctly performing similar work
should produce similar logs (anomalies warrant investigation).

Jon Stearley
jrstear@sandia.gov

Identifying and Predicting Faults"

Research to Identify Root Cause"
–  Develop mathematical methods to describe and track dependencies

between system components!
–  Develop tools to analyze models, identify root cause, and provide

feedback to fault-response systems (e.g., the system directed LDRD)"

Research on Fault Prediction"
–  Develop methodologies for anomaly detection and quantification"
–  Correlate anomalous behaviors with root causes"
–  Use automated anomaly detection and learned correlations to predict

failures with a calculated level of confidence"

Impact"
–  Critical enabler for automated response (also useful to admins)"
–  Mathematics necessary to design and operate truly resilient systems"
–  Quantify the system-wide impact of failures."

14

First Quarter"
–  Enumerate list of faults, likelihood of fault, and possible response (Stearley)"
–  Investigate options for quiescence (Brightwell)"
–  Investigate diskless state management and node recovery (Oldfield)"
–  Investigate related projects – BLCR (Kordenbrock)"

Second Quarter"
–  Complete design of code to trace application memory usage (Pedretti)"
–  Complete design of network virtualization layer (Brightwell)"
–  Complete design of fake RAS system (Riesen)"
–  Complete design of diskless state management and recovery (Oldfield)"

Fourth Quarter"
–  Memory-use characterizations for selected applications (Pedretti)"
–  Demonstrate response to link failures – may not need node recovery (Laros)"
–  Demonstrate network virtualization layer (Brightwell)"
–  Demonstrate fake RAS – inject faults (Riesen)"

FYʼ09 9Lives Deliverables"

15

FYʼ09 Prediction Deliverables"

16

•  First Quarter"
–  Selection of algorithms for anomaly detection (multivariate distributions and time series

phenomena) "
–  Define database schema for collection of system variables and for representation of data to

support the different analyses"

•  Second Quarter"
–  Quantification methodologies, failure definition and recording mechanisms, data collection (CPM,

Log, Workload, COS, etc.)"

•  Third Quarter"
–  Implementation and validation of anomaly detection algorithms"
–  Selection of algorithms for correlation of failures with anomalies (classification and root cause

inference)"
–  Attributes selected for predictive analysis"
–  Scalable data collection and representation"

•  Fourth Quarter"
–  Implementation and validation of failure to anomaly correlation techniques"
–  Write SAND report documenting:"

•  Quantification of the ability to predict failures on the TLCC platform
•  Additional information/data that should be collected, as well as suggested scalable collection

mechanisms, in order to improve failure predictability on future platforms

Proposed Process for  
Collecting per-node COS on TLCC"
Scheduled
Downtime

Unscheduled
Downtime

Production
Uptime

SLURM and MOAB logs and databases are postprocessed into COS records."

All downtimes are counted as Unscheduled, unless distinguishable otherwise:"

Only the admins know if a downtime is scheduled or not, so they must be
involved in distinguishing them. The easiest way to do this would be to use a
flag to scontrol and mrsvctl like: 

 scontrol -sd [cause…] 
 mrsvctl -sd [cause…] 

Which would be shorthand for  

 scontrol reason=“SD: [cause]”  
 mrsvctl -a ACCT=SD -D “SD: [cause]” 

Where [cause] is an optional argument describing the downtime.  
-sd could be added, aliased, or wrapped. More details are on the next slide."

SNL Resilience Interactions"

Root Cause: Graph Model"

19

Distinguishing Symptoms ""
–  Text (logs, username, job id, rank id, …)"
–  Thresholds (temperature limits, …)"
–  Waveforms (cpu profile, …)"
–  Correlations"

Suspect Components ""
–  Hardware (racks, cores, routes, …)"
–  Software (daemons, apps, libraries, …)"

Dependencies " ""
–  Functional, Physical"
–  Static, Dynamic"

Root Cause (likelihood ranked)"

* Holes: incomplete data, incomplete time, incomplete components, incomplete dependencies

Given hints (influences search path):

Identify:

LABELS "

VERTICES

EDGES

(paths)"

G=(V,E,L)
Properties?
Useful model?
Useful algorithms?

